Data for Robot Manipulation: From Demonstrations to Autonomy

Chelsea Finn

How can robots **generalize** to the real world?

How can robots **generalize** to the real world?

Recipe: Large, expressive models + Broad data

Key challenge Where does the data come from?

Demonstration data? Autonomously collected data?

How we get broad robotics data?

What robot learning research currently does

Collect a new data for the project.

Don't use the data again.

for *each* and *every* project

Can we share *data* and *pre-trained models* across institutions in robotics? If so, I think we could make a lot more progress collectively!

What ML research currently does

Collect a large dataset once (e.g. ImageNet, Wikitext)

Reuse it many times

Or even better: Reuse a pre-trained model

What is stopping us from sharing data across institutions?

RoboTurk dataset

your next experiment

MIME dataset

Bridge dataset

The state of the

Robonet dataset

What is stopping us from sharing data across institutions?

Can we make a larger island in a centralized, community-driven effort?

Project Slack: 70 people from 18 slack orgs

What is stopping us from sharing data across institutions? Can we make a larger island in a centralized, community-driven effort? Project Slack: 70 people from 18 slack orgs

So far: <u>38k+ demos</u> in <u>600+ scenes</u> collected by 11 labs on common platform

What is stopping us from sharing data across institutions?

Let's also use the data we already have!

Step 1: Put all of the data in a common format Step 2: Train a large model on the data

What is stopping us from sharing data across institutions?

Let's also use the data we already have!

Step 1: Put all of the data in a common format ... as a community!

As of Oct 8:

- 174 co-authors
- 34 research labs
- 21 institutions

The Aggregated Open X-Embodiment Dataset

Using the Open X-Embodiment Data

Download & sampling is straightforward:

For details, download, & colabs, see: <u>robotics-transformer-x.github.io</u>

Can we train models on the data?

Reuse architectures from prior works.

- Trained using supervised learning. —
- RT-2-X uses pre-trained vision-language model

Training & Evaluation Methodology

RT-1-X Experimental Results

- Including the original method from each lab.

RT-2-X Results: Novel Instructions Outside of Google Robot Data

(a) Absolute Motion

move the chip bag to the top / bottom right of the counter

move to top right / right / bottom right

(b) Object-Relative Motion

move apple between coke and cup / coke and sponge / cup and sponge

(c) Preposition Alters Behavior

put apple on cloth / move apple near cloth

put orange into the pot / move orange near pot

put banana on top of the pan / move banana near pan

Open X-Embodiment Collaboration. Open X-Embodiment: Robotic Learning Datasets and RT-X Models, '23

move apple between can & orange

- Hope for broader community participation,
 - continued dataset expansion
- If you're interested in joining: email <u>open-x-embodiment@googlegroups.com</u>

Open X-Embodiment Collaboration. Open X-Embodiment: Robotic Learning Datasets and RT-X Models, '23

- **Takeaway:** Large-scale data is starting to become a reality for robotic manipulation.
 - Also lots of future opportunity:

Come to Thursday 11 am sponsor talk for info on access to RT-2-X.

Everything so far: human-teleoperated demonstration data

Everything so far: human-teleoperated demonstration data not scalable

Can we grow the data with autonomous collection, to cover more and more tasks?

Diverse Off-the-shelf Demo Data

Small Amount of Target Task Demos

Finetuned VLM Reward Model

Diverse Off-the-shelf Demo Data

Small Amount of Target Task Demos

Pre-Trained VLM

Finetuned VLM Reward Model

Diverse Off-the-shelf Demo Data

Small Amount of Target Task Demos

Pre-Trained VLM

Finetuned VLM Reward Model

Diverse Off-the-shelf Demo Data

Small Amount of Target Task Demos

Finetuned VLM Reward Model

Diverse Off-the-shelf Demo Data

Small Amount of Target Task Demos

Finetuned VLM Reward Model

Diverse Off-the-shelf Demo Data

Small Amount of Target Task Demos

Finetuned VLM Reward Model

RoboFuME: Key Design Choices

- Learn language-conditioned policy & critic on all data
- (incl. small # of failed demos)
- Cal-QL algorithm for RL pre-training and fine-tuning
- Behavior cloning regularization

Nakamoto, Zhai, Singh, Mark, Ma, Finn, Kumar, Levine. Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning. NeurIPS '23 Yang*, Mark*, Vu, Sharma, Bohg, Finn. Robot Fine-Tuning Made Easy. arXiv '23

• Fine-tune MiniGPT4 to predict binary success/failure using prior & new demo data

Real Robot Experiments Prior Data: Bridge V2 (off-the-shelf, collected at UC Berkeley)

Downstream Tasks (to be learned at Stanford)

Candy Sweeping

Cloth Folding

Yang*, Mark*, Vu, Sharma, Bohg, Finn. Robot Fine-Tuning Made Easy. arXiv '23

Walke, Homer, et al. "BridgeData V2: A Dataset for Robot Learning at Scale."

Object Covering

Pot Lid

Pot Pick-and-Place

Demos for Target Tasks (Candy Sweeping)

Successful Forward Demos (Samples)

Failure Forward Demos (Samples)

Yang*, Mark*, Vu, Sharma, Bohg, Finn. Robot Fine-Tuning Made Easy. arXiv '23

Successful Backward Demos (Samples)

Failure Backward Demos (Samples)

Reset-free Fine-tuning (Candy Sweeping)

Evaluation (Candy Sweeping)

Behavior Cloning 31%

Yang*, Mark*, Vu, Sharma, Bohg, Finn. Robot Fine-Tuning Made Easy. arXiv '23

Ours (without Fine-tuning) 47%

Ours (after 3 Hours of Fine-tuning) 66%

Results on other tasks

Offline BC-> RoboFUME after 3 hrs of fine-tuning

60%->85%

45%->80%

Yang*, Mark*, Vu, Sharma, Bohg, Finn. Robot Fine-Tuning Made Easy. arXiv '23

60%->95%

45%->**55%**

Robot can autonomously collect *useful* data for new tasks.

Analysis: Are Prior Data, Language-Conditioning, & Online Data Important?

Ours (after 3 Hours of Fine-tuning): 66%

Ours (Offline Only) 47%

Ours (Offline Only) w/o Language Conditioning 13%

Yang*, Mark*, Vu, Sharma, Bohg, Finn. Robot Fine-Tuning Made Easy. arXiv '23

Ours (Offline Only) w/o Prior Data 23%

More experiments in simulation in the paper!

Data for Robotic Manipulation: Takeaways

1. Large-scale data is starting to become a reality for robotic motor control. 2. We have a path towards scaling data collection, via robot autonomy.

What robot learning research usually does

Collect a new data, use it for a project. Don't use the data again.

for each and every project

The start of a paradigm shift.

What ML research currently does

Collect a large dataset once (e.g. ImageNet, Wikitext)

Reuse it many times

Or even better: Reuse a pre-trained model

Let's figure out how to make this the norm!

Questions?

